If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+34x-25=0
a = 1; b = 34; c = -25;
Δ = b2-4ac
Δ = 342-4·1·(-25)
Δ = 1256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1256}=\sqrt{4*314}=\sqrt{4}*\sqrt{314}=2\sqrt{314}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{314}}{2*1}=\frac{-34-2\sqrt{314}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{314}}{2*1}=\frac{-34+2\sqrt{314}}{2} $
| 20-f=27 | | 8=r/2+6 | | 5b-8=8b-5 | | 15y+31=61. | | 0a=1-1 | | 4a+3=11. | | 5x-0.5=6x | | g=8+2/9 | | -2(-c-20=-2c-20 | | 7x2+5x–1=2x2+3x+2 | | 4x+6x+(2*5)=4(3+2)-x | | 3h=10+4h | | 40=-1/3(12x+30)+6 | | -7(7x-3)=-49x+21 | | -6+{1}{2}12a=7 | | 8-6b=-4-4b | | 14x-11=90/x+1 | | X²-10x-75=0 | | |4x|=16 | | 3x+7=20+2x | | -4=11-3w | | x/14+18=18 | | -10+9s=8+10s+s | | 3v=1+2v | | 3x-7=2x-20 | | 1,5x+4=13 | | -3v-8=1 | | 7a-4=25 | | 14x^2-12x=90 | | 1.4y=9.8 | | 28+12x=8x-28 | | -(2+6n)=-5n+3 |